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Abstract. This paper presents a new method to measure semantic re-
latedness between concepts of an ontology with a rich set of relationship
types, and preforms a preliminary assessment of its validity. The mea-
sure was designed to be applicable to all biomedical ontologies, and to
be flexible enough as to allow for different applications to address their
own requirements by tuning, for example, the weight of each relation-
ship type. We focus on the fact that we measure relatedness instead of
similarity, which measures not simple likeness between concepts but also
other interactions like articulation of cartilage and bones.

We applied the measure to the Foundational Model of Anatomy, an ontol-
ogy of human anatomy, and showed that it can be used to differentiate
between related pairs of anatomical concepts and unrelated ones with
higher performance than a custom similarity measure would.

This work has shown positive preliminary analysis of the generic measure
developed, which is a step forward to implementing tools to process the
information contained in the increasing amount of biomedical ontologies.
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1 Introduction

One of the most important techniques applied to biomedical ontologies has been
the calculation of semantic similarity between concepts, which quantifies the
similarity in meaning between two concepts, as described in the ontology [15].
This technique is at the core of many applications, such as information search
[2], where the results are sorted from most similar to the original query to least
similar. Without a framework that enables computers to grasp the concept of
semantic similarity, it would be impossible to automatically understand that,
e.g., “Heart” is more similar to “Kidney” than to “Toenail”.

Semantic similarity, however, does not serve all purposes; in some cases, re-
latedness measures provide a more interesting and effective way of solving a
problem. For instance, in the study of localized diseases, the physical proxim-
ity between anatomical concepts can be more meaningful than their similarity;
also, from the point of view of pharmacology, it is meaningful that both “lisuride”



and “metixene” (identifiers chebi:51164 and chebi:51024 respectively) are an-
tiparkinson drugs, despite their lack of structural similarity.

Pedersen et al. [13] mention the difference between similarity and relatedness.
According to them, similarity is a stricter form of relatedness: a pair of similar
concepts share form, shape or structure: in other words, the concepts are alike.
As such, similarity is strongly related to relationships of subsumption: “Heart”
is-a “Organ”, just like “Kidney” is-a “Organ” etc. On the contrary, this paper
presents a semantic relatedness measure that takes into account various relation-
ship types, particularly in ontologies that use several, such as in the biomedical
domain [17]. For example, the Foundational Model of Anatomy (FMA), where
single inheritance could potentially lead to smaller levels of expressiveness, con-
tains over 60 relationship types, effectively allowing for a rich content and a high
expressiveness; other examples include ChEBI, with 10, and PATO, with 8.

2 State of the Art

In the biomedical field, semantic similarity has been extensively used in the
Gene Ontology (GO) [10, 15], with applications like prediction of protein func-
tion [11, 6], prediction of protein-protein interactions [19] or prediction of breast
cancer outcome [18]. Other ontologies used with semantic similarity approaches
in the biomedical domain include the HPO, where similarity of phenotypes is
used to “refine the differential diagnosis by suggesting clinical features that,
if present, best differentiate among the candidate diagnoses” [8], and ChEBI,
where it was used to predict properties of small molecules [5]. Even though the
methods described in these papers are named similarity measures, most of them
use relationship types other than subsumption, which effectively makes them
semantic relatedness measures.

However, relatedness measures, explicitly named so, have not been very well
explored in the biomedical domain. Patwardhan et al. [12] explore a relatedness
measure in WordNet, based on context vectors that represent co-occurrence of
words, which was later adapted [13] to work with SNOMED-CT, a clinical ter-
minological resource, but this method does not use the relations of the ontology,
only the concepts themselves and their descriptors.

3 Generalization of relatedness measures

Semantic relatedness suffers from a lack of generalization, as the methods cur-
rently in use have all been specifically tailored to work on the ontologies they
are applied to, and greatly depend on the subsumption of concepts. With the
establishment of OBO and the increasing interest in ontology development and
application to real-world problems, we are at a point where relatedness measures
are expected to be developed to other ontologies as well. This problem can be
handled in two distinct but parallel perspectives: we can wait for a team to de-
velop, evaluate, publish and deploy a measure to work with their own ontologies,



and/or we come forward with a generalized methodology that can be applied to
all biomedical ontologies.

Specifically developing a measure for an ontology is, perhaps, the preferred
solution: semantic relatedness measures tailored to one ontology will most likely
deliver best performance than a general methodology. However, if a strong gener-
alized measure is developed, information retrieval teams can build their systems
over it without the need to create a specific measure from scratch for each on-
tology of interest. Furthermore, for research on epidemiologic surges, a field that
uses ontologies of, e.g., diseases, symptoms, anatomical parts and geographic
locations [3], readily applicable measures of semantic relatedness would be an
asset for a quick deployment of results.

We present a measure of relatedness that can be easily applied to all biomed-
ical ontologies, as long as they define concepts and relations between them. It is
flexible enough to allow for a number of adaptations that can be fine tuned not
only for the ontology itself but also according to the type of application making
use of the measure. As a case study, we applied the measure to FMA, a complex
ontology where the methods that have been used in GO do not work well (see
the section on Results).

3.1 Relatedness measure

In general, similarity can be calculated based on the is-a relationship. For ex-
ample, “Heart” is more similar to “Kidney” (both are organs) than to “Cardiac
ventricle”. Instead, to measure relatedness, we propose a metric that takes into
account not the likeness of two concepts but the overlap of their neighborhoods.

The formula for the relatedness measure we propose depends on the relevance
of one concept to another one. We use a relevance factor, ω(i → x), to express
the relevance of concept i with relation to concept x, and take N(x) as the
neighborhood of x (the concepts that are relevant to x). Relatedness between two
concepts, ρ(A,B) is then measured through the overlap in their neighborhood:

ρ(A,B) =

∑
i∈N(A)∩N(B) ω(i→ A) + ω(i→ B)∑
i∈N(A)∪N(B) ω(i→ A) + ω(i→ B)

(1)

with ω(i→ x) = 0 if i 6∈ N(x).
Equation 1 can be adapted to a wide number of situations. For example,

N(x) can be defined as the set of concepts connected to x with a path of at
most M relations (the radius of the neighborhood). ω(i → x) can be defined
based on the relationship types of the path from i to x: if this path is composed
of n relations of type r1, . . . , rn, then

ω(i→ x) =
∏

weight(rj) (2)

where weight of the relations is higher for more important relationship types.
Other examples include N(x) as the set of concepts whose relevance factor is

above a certain threshold; or the relevance factors can be fine tuned to measure



relevance taking into account specificity (e.g., through information content). In
fact, if one takes N(x) to be the set of superclasses of x and ω(y → x) to be
the information content of y, the measure is not very different from simGIC (the
difference being that common superclasses would appear twice in the numerator
and in the denominator) [14].

Each application is free to define what constitutes a neighborhood and what
is the relevance of one concept to another one. For instance, in an application
concerned more with physical location than with similarity, the following should
hold:

ω(“Cardiac ventricle”→ “Heart”) > ω(“Kidney”→ “Heart”)

3.2 FMA

The Foundational Model of Anatomy (FMA)1 [16] is restricted through single
inheritance but its many relationship types make it a very content-rich ontology.
As per the definition in [13], these relations can be exploited to determine the
relatedness between two anatomical concepts. For instance, the relationship type
articulates-with, which “holds between two or more adjacent bones or between
a bone and a cartilage through a joint” (from the definition of FMAID:276393),
does not convey likeness between the connected concepts, but there is no doubt
that concepts connected through it are related. Whether this relationship is
important for an application is dependant on that application’s goal, and as
such, any measure should be flexible enough to allow the user to determine
which relationship types are relevant, and to what extent.

We chose FMA as our case study based on four points:

1. it uses over 60 relationship types, which means a lot of semantic information
is contained in non-subsumption relationship types;

2. it is a very complete ontology of the human anatomy, with applications
such as X-ray and disease annotation. In fact, we have used cross references
between FMA concepts and diseases to assess the validity of the developed
measure;

3. we plan to extend this measure to ontologies in the epidemiological field in
the future, and FMA is one such ontology;

4. semantic similarity measures developed for GO do not deliver good results
in this ontology.

In this case study, N(x) was defined as the concepts that are connected to x
through a path no longer than M relations (where M ∈ {3, 4}), and ω(i → x)
was defined through equation 2 with the weight of all relationship types set to
0.7. For concepts connected with more than one path, ω(i→ x) is the maximum
of all those relevance factors.

1 Accessible from http://sig.biostr.washington.edu/projects/fm/AboutFM.html. The on-
tology is described in frames and must be opened with the Protégé software or used
directly as a MySQL database. OBO and OWL version exist, but they contain only
a subset of the ontology.



On the one hand, a small value of M makes the intersection of neighbor-
hoods likely to be empty. By increasing its value, the measure considers a larger
neighborhood and gains resolution. On ontologies with more concepts or less
relations, M should be increased to avoid that problem. On the other hand, a
large value of M increases the time to calculate relatedness, so a compromise
must be made. We studied values of M ∈ {3, 4} to understand that compromise.

As for the weight of each relation, it was verified that changing the absolute
value did not particularly influence the results. In a specific application, the
relative weight of a relation must be attributed based on its relevance; as an
example, we used a value of 0.7 since it decreases the relevance factor of the
more distant concepts, but values of 0.5 and 0.8 showed the same kind of results.

4 Results and Discussion

Our measure returns a value of relatedness between two FMA concepts. In order
to assess the validity of such a measure we must determine if the value returned
makes sense in a biomedical context. As discussed above, each application must
weight each relationship type depending on its main goal. For this first measure
of assessment, however, we have assigned equal weights to all relationships.

Two avenues were pursued to validate the approach. The first was based on
a simple match between FMA and GO. There is an overlap of 274 labels in
both ontologies (counting preferred names and synonyms), with 256 GO cellular
component concepts matched to 267 FMA concepts. Using these matches, we
were able to compare FMA’s relatedness measure with two of the most successful
similarity measures developed for GO, Resnik and simGIC [14]. Figure 1 shows
the scatter plots, where the X-axis has FMA’s relatedness measure and the Y-
axis has GO’s similarity measure. Correlation coefficients are given for each plot
in Table 1. There is some correlation between the two measures, which is a good
indication of the validity of the proposed method. However, these values are only
relatively good, seeing that:

1. first and foremost, we are comparing a similarity measure with a relatedness
one;

2. the two ontologies take distinct points of view about the cellular domain [1];
3. simGIC and Resnik use external background knowledge (in the form of infor-

mation content) and this measure uses the structure of the ontology alone;
4. GO is mainly an application ontology, whereas FMA is a reference ontology.

The second assessment approach was based on the notion that a pair of
anatomical entities implicated in the same disease should be more related than
a random pair of anatomical entities. Using HPO’s annotation corpus2, we were
able to derive a mapping from diseases to symptoms and from symptoms to FMA
concepts (see Figure 2). From this, we derived the set of pairs of related FMA
concepts. We then extracted random pairs of other FMA concepts as the set of
pairs of unrelated FMA concepts and performed an ROC analysis as follows:

2 We have used the MySQL dumps of HPO, available from http://compbio.charite.de/
svn/hpo/trunk/src/misc/.



(a) simGIC vs. ρM=3 (b) simGIC vs. ρM=4

(c) Resnik vs. ρM=3 (d) Resnik vs. ρM=4

Fig. 1. The correlation between simGIC and our measure of relatedness. Each point
represents a mapping from GO to FMA, and its position in the graphic depends on
their FMA relatedness (X-axis) and GO similarity (Y-axis) values. Correlation factors
are shown in Table 1.

Table 1. The correlation coefficients corresponding to the graphics in Figure 1.

GO similarity measure Neighborhood radius Correlation

Pearson Spearman

simGIC M = 3 0.488 0.475
simGIC M = 4 0.417 0.537
Resnik M = 3 0.367 0.398
Resnik M = 4 0.330 0.460



Fig. 2. The work flow followed to get FMA concepts and associated diseases.

Fig. 3. The ROC curves obtained from the ROC analysis. Each ROC curve is the
average of 10 other ROC curves, each one produced with a different set of random
unrelated pairs of FMA concepts, as described in [4] (see Algorithm 5 of that paper).

Using the relatedness measure as a score between each pair, we can arbitrarily
define a threshold above which pairs should be classified as related and under
which pairs should be classified as unrelated. By comparing these results with
the actual related and unrelated pairs, we obtain values of sensitivity (fraction
of the related concepts classified as related) and specificity (fraction of unrelated
concepts classified as unrelated). Setting the threshold to values from 0 to 1, we
can draw a “sensitivity vs. (1 − specificity)”, or ROC, curve [4]. These curves
are presented in Figure 3. For comparison purposes, we have also implemented
the simGIC measure to FMA, according to [14].

As is evident from the figure, the best performing measure was FMA’s relat-
edness measure with M = 4, since high values of sensitivity are obtained without
compromising specificity. The main difference between the measures with M = 4
and M = 3 is that the former has more resolution power in that it can differen-
tiate between concepts 8 relations apart, whereas for the latter, concepts with a



path distance greater than 6 have a relatedness value of 0.0. Additionally, for a
threshold of 0.0, all pairs are classified as related (sensitivity = 1 and specificity
= 0). Given the lower resolution of the M = 3 measure, there are a lot more
pairs with relatedness value of 0.0, resulting in the straight line. With a larger
value of M (M ≥ 5), it would be possible to increase the resolution even further,
at the cost of time of execution. However, this would be reflected only in the less
related concept pairs, those that are more distant to one another.

Furthermore, to illustrate our assertion that semantic similarity is not al-
ways appropriate, consider the performance of simGIC in the same figure, which
demonstrates the superiority of relatedness measures over semantic similarity,
at least when applied to ontologies where a wide number of relationship types
is used.

Other validation approaches are being considered, including a correlation be-
tween relatedness and co-occurrence of concepts in a corpus, and asking experts
in the area (physicians) to score pairs of anatomical concepts based on related-
ness. This, however, must take into account that their background knowledge
may differ significantly, e.g., a cardiologist and a physician specialized in infec-
tious diseases may have different points of view concerning the relatedness of
“Heart” and “Lung”.

5 Conclusions

With the advent of biomedical ontologies and its generalization among several
fields of research, an increasing amount of ontology-based applications are emerg-
ing which leverage on the knowledge encoded in the ontologies as a way of
processing and deriving new knowledge and filtering results. A measure of relat-
edness between ontology concepts is of the utmost importance to these applica-
tions. Here we presented a measure that is general enough that it can be applied
to most extant biomedical ontologies. It is based on the concept of relevant
neighborhood and relevance factors, and can accommodate the needs of partic-
ular applications by fine tuning its parameters. For example, by giving different
weights to different relationship types, the measure can give more importance
to some neighbors than others. Another advantage of the method is that it can
incorporate external knowledge, through appropriate relevance factors, but it is
not required to do so.

The concept of relevant neighborhood introduced in this work is also a bridge
to other methodologies, particularly in allowing the use of ontology mappings
to define wider neighborhoods that draw not only from a specific ontology but
from related ontologies as well, as long as a mapping of some sort exists between
the ontologies. For example, cross-references can be used for this effect.

One possible application of this measure is to improve Information Retrieval
systems where resources (such as datasets, web pages and documentation) are
fully- or semi-automatically annotated, both when the user is searching from
keywords or trying to find resources related to a given input. Projects like the



Epidemic Marketplace [9] or the RICORDO effort to integrate clinical informa-
tion [7], will consequently benefit from this measure.

Finally, a preliminary analysis was preformed on FMA, and the results show
that this is a valid method to measure relatedness between biomedical concepts.
We expect to successfully apply the measure to other ontologies in the future,
with focus on ontologies that may also be valuable to the epidemiological field.

Acknowledgments

The authors want to thank the European Commission for the financial support
of the EPIWORK project under the Seventh Framework Programme (Grant
#231807) and the FCT for the financial support of the PhD grant SFRH/BD/
69345/2010 and the Multiannual Funding Programme

References

1. Au, A., Li, X., Gennari, J.H.: Differences Among Cell-structure Ontologies: FMA,
GO, & CCO. In: AMIA Annual Symposium Proceedings. vol. 2006, pp. 16–20.
American Medical Informatics Association (2006)

2. Cao, S.L., Qin, L., He, W.Z., Zhong, Y., Zhu, Y.Y., Li, Y.X.: Semantic search
among heterogeneous biological databases based on gene ontology. Acta biochimica
et biophysica Sinica 36(5), 365–70 (2004)

3. Collier, N., Goodwin, R.M., McCrae, J., Doan, S., Kawazoe, A., Conway, M., Kaw-
trakul, A., Takeuchi, K., Dien, D.: An ontology-driven system for detecting global
health events. Proceedings of the 23rd International Conference on Computational
Linguistics pp. 215–222 (2010)

4. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Ma-
chine Learning 31, 1–38 (2004)

5. Ferreira, J.D., Couto, F.M.: Semantic Similarity for Automatic Classification of
Chemical Compounds. PLoS Computational Biology 6(9), e1000937 (2010)

6. Godzik, A., Jambon, M., Friedberg, I.: Computational protein function prediction:
are we making progress? Cellular and molecular life sciences 64(19-20), 2505–11
(2007)

7. Hunter, P., Coveney, P., de Bono, B., Diaz, V., Fenner, J., Frangi, A., Harris, P.,
Hose, R., Kohl, P., Lawford, P., et al.: A vision and strategy for the virtual physio-
logical human in 2010 and beyond. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 368(1920), 2595 (2010)
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